Rsource monitoring Avito
https://habr.com/ru/companies/avito/articles/694232/
Привет! Меня зовут Антон Губарев, я инженер PaaS (Platform-as-a-Service) в Авито. Платформа как сервис позволяет продуктовым командам разработки не тратить время на рутинные и инфраструктурные задачи, например, определение оптимальных значений request/limit CPU и RAM для контейнеров в кластерах Kubernetes. Вместо этого они могут сосредоточиться на качестве сервиса, над которым работают. PaaS умеет автоматически рассчитывать ограничения и выделять ресурсы для каждого сервиса.
Рассказываю, как мы в Авито собираем метрики потребления ресурсов серверного оборудования, храним и используем их, чтобы спланировать потребление в будущем.
Решения для сбора метрик и анализа потребления ресурсов
Все сервисы Авито выкатываются в 3–4 независимых кластера Kubernetes и весь влетающий трафик балансируется между ними. Сервис в продакшене существует в каждом кластере. Взаимодействие осуществляется через наш Service Mesh, в том числе и между кластерами если это необходимо. Всего мы используем несколько десятков кластеров под разные нужды, и они периодически сменяют друг друга: один выводится из эксплуатации и вместо него вводится другой.
При таком количестве сервисов и кластеров важно понимать, сколько ресурсов оборудования мы тратим на текущие задачи и сколько понадобится при масштабировании в будущем. Для этого мы регулярно собираем и анализируем метрики:
Потребление CPU и RAM глобально на все сервисы суммарно.
Потребление CPU и RAM на каждый контейнер/под, чтобы можно было выявить аномалии.
Суммарное потребление по деплойментам.
Индекс потребления (Resource Volume) как единая метрика, понятная для руководства.
Раньше для сбора метрик и мониторинга мы использовали Prometheus, но со временем его возможностей перестало хватать. Поэтому перешли на VictoriaMetrics. Это база данных для хранения временных рядов, которая поддерживает протокол PromQL.
VictoriaMetrics отлично кластеризуется и меньше тормозит на тех же объёмах данных. Переход на новое решение позволил снизить потребление ресурсов CPU примерно в семь раз, а RAM — в 12 раз.
Потребление CPU: жёлтая полоса — Prometheus, зелёная — VictoriaMetrics
Потребление RAM: жёлтая полоса — Prometheus, зелёная — VictoriaMetrics
При этом осталась задача, которую VictoriaMetrics решить не может в наших условиях: долгосрочная аналитика и планирование потребления. Недостаточно данных за семь дней, нужна информация за месяцы и кварталы. А хранить такие объемы без серьезной потери производительности не позволяли возможности ни VM, ни Prometheus.
В качестве решения для хранения данных за длительный период мы выбрали ClickHouse. Это OLAP-система, которая способна переваривать большие объемы. Предварительные эксперименты показали, что ClickHouse может не только хранить, но и быстро отдавать данные за нужные нам периоды..
Ещё у ClickHouse есть интересные фичи:
Материализованные представления — аналог View в РСУБД.
Словари — хранилище внешних данных в виде пар «ключ-значение». Доступ к ним происходит быстрее, чем с помощью JOIN-ов.
Какие данные о потреблении мы храним
Главные метрики, которые нас интересуют: глобальный расход CPU и RAM, расход на каждый контейнер или под и общий индекс потребления Resource Volume.
Сначала разберёмся с метриками для CPU/RAM. С точки зрения аналитики нас интересует фактическое потребление — usage, и запрошенные ресурсы — request, для сервиса за минуту, день, неделю и месяцы. Основная таблица хранения в ClickHouse:
Мы написали сборщик данных, который аккумулирует данные из всех экземпляров VictoriaMetrics и переносит их в ClickHouse, контролирует доступность источников. С его помощью сделали первую выгрузку данных за полгода. Получили больше 15 миллиардов записей, при этом аналитические запросы длились от 10 секунд — это долго.
Чтобы улучшить производительность, решили использовать материализованные представления и просуммировать данные по подам до уровня микросервиса. Этого достаточно для аналитических запросов и планирования потребления. Для суммирования использовали движок SummingMergeTree, который присутствует в ClickHouse.
Запрос, с помощью которого данные из таблицы-источника автоматически переносятся в материализованное представление:
Новая выгрузка данных за полгода дала около 2 миллиардов записей, а аналитические запросы стали занимать меньше секунды.
Ещё одна важная метрика — Resource Volume (RV). Она показывает общую картину потребления ресурсов в компании и нужна больше для менеджмента. 1 RV — это эквивалент 1 CPU или 3 ГБ RAM. Допустим, у сервиса есть 10 реплик, каждая из которых потребляет 1 CPU и 2 ГБ RAM. Значит, всего сервис использует 10 CPU и 20/3 RAM, или 16,6 RV.
Как отображаются аналитические данные о потреблении ресурсов
Аналитика потребления отображается в формате графиков и диаграмм в Grafana.
Дашборд в Grafana
Отдельный дашборд с данными за несколько месяцев есть в PaaS. Внутри него можно посмотреть детализацию потребления до пода. Можно быстро проверить, сколько ресурсов потребляет каждый сервис, и сразу увидеть аномалию.
Дашборд потребления ресурсов в PaaS
На основе аналитики в PaaS мы построили систему бюджетирования ресурсов. Команды, которые используют общие ресурсы, объединены в юниты. Каждый юнит раз в квартал подаёт заявку на выделение для него серверных мощностей. Одобренные заявки и использованная часть ресурса отображаются в дашборде.
Использованный ресурс рассчитывается в единицах Resource Volume
Юниты отслеживают, какую часть ресурса они уже использовали. Если ресурсов недостаточно, например, юнит не учёл масштабирование, можно подать новую заявку досрочно.
Запрос ресурсов и ограничения
Кроме мониторинга потребления нужно правильно распределить ресурсы между сервисами. Для этого мы автоматически считаем, сколько ресурсов он запрашивает и какими лимитами ограничен.
В Kubernetes можно установить значения request и limit для CPU и RAM для каждого контейнера. Причём разработчики Авито делают это не вручную, а только указывают с помощью PaaS, сколько реплик сервиса им нужно. Система деплоя распределяет их по кластерам, в том числе рассчитывает request и limit.
Расчёт проходит в четыре шага, на каждом из которых значения request/limit могут измениться.
Этапы расчёта request/limit для сервиса
Первый шаг / Box. Для каждого языка программирования, которые используются в Авито, и для каждого размера сервиса есть предустановленные — «коробочные» — значения. Размер может быть большой, средний или маленький, его указывает в конфигурации разработчик, когда создаёт сервис (может быть изменено в любой момент). Языки, для которых есть предустановленные значения, — Go, PHP, Python, JavaScript, Kotlin и Swift. Например, для маленького сервиса на Go можно запросить максимум 100 CPU.
Второй шаг / Usage. Для расчёта значений request/limit на этом шаге используется 75 перцентиль за три дня и постоянный коэффициент Ratio. Данные по потреблению хранятся в VictoriaMetrics, среднее значение берётся по всем кластерам, где запущен сервис.
Коэффициент Ratio для CPU и RAM выведен эмпирически и помогает пересчитать реальное потребление в значение request/limit
Например, если сервис за прошлые 3 дня потреблял в среднем 500 RAM, то значение request для него будет равно 1 000 (Ratio=2), а limit — 5 000 (Ratio=10).
Третий шаг / Range. Для исключения вероятности бесконтрольного роста значений request/limit и возможности появления аномалий мы установили некоторые пороговые значения, больше или меньше которых значения выставиться не могут. —
Значения Range заданы в PaaS вручную и зависят от языка программирования и размера сервиса
На этом шаге платформа проверяет каждый контейнер и корректирует request/limit, если они вышли за максимальное или минимальное значения. Даже если один из микросервисов ведёт себя аномально и потребляет слишком много ресурсов по историческим данным (Usage), это не повлияет на выделение ресурсов в новом деплое. При возникновении таких ситуаций разработчики разбираются в проблеме и исправляют ее, чтобы потребление пришло в норму.
Четвёртый шаг / Manual. В случае, когда автоматические расчёты не подходят, разработчик может выставить значения request/limit вручную. Например, если запускается высоконагруженный и критически важный микросервис, для которого нужны особые условия. Для этого есть специальный конфигурационный файл, в котором описывается, сколько реплик должно быть, какие переменные окружения, кроны и воркеры. Ещё в нём можно указать значения request/limit для крона, воркера или самого сервиса. Этот файл использует PaaS, когда разворачивает сервис. В конфигурационном файле разработчик вручную может прописать необходимые значения request и limit
На этом заканчивается работа автоматики, и микросервис раскатывается в нужное количество кластеров с нужными значениями ресурсов.
Что даёт мониторинг потребления ресурсов
Мы собираем полные данные по использованию ресурсов за год по всем сервисам и юнитам, поэтому точно знаем, кто и сколько потребляет. На основании этой информации можно долгосрочно планировать, например, для масштабирования в будущем.
В любой момент мы можем найти причину утечки ресурсов, если один из сервисов ведёт себя аномально. Вся информация за последнюю неделю хранится в VictoriaMetrics, а данные можно детализировать до каждого контейнера.
Разработчики не должны думать об устройстве инфраструктуры и запросе ресурсов. PaaS автоматически выставляет объективные значения request и limit для CPU и RAM. При этом в особых случаях можно прописать их вручную в конфигурационном файле.
Last updated